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1. INTRODUCTION

The role of statistical testing has been the subject of discussion for years. 
An overview of this topic was given decades ago for instance in Cox et al. 
(1977). Nevertheless, the matter is still important, which confirms for example 
the paper on statistical testing in finance written by Kim, Ji (2015). As was 
mentioned in that paper, many statistical tests are used in practice with little 
consideration of their key characteristics as size and power. These character-
istics should be intensively studied at least in simulations as, for example, in 
Pavia (2015), Górecki, Smaga (2015) or Orzeszko (2014). In this paper, we 
investigate the finite sample behavior of some goodness-of-fit testing proce-
dures for truncated distributions known in the literature. Such behavior was not 
considered in the original paper introducing these tests. The paper is an ex-
tension of the results obtained in the bachelor thesis by Lach (2017). 

The shape of a distribution in the tails is very important in many areas of sci-
ence. Chernobai et al. (2015) adapted the standard goodness-of-fit tests for left-
truncated distributions. The modifications of standard procedures help to take the 
decision, whether the tail belongs to a specified distribution or not. The tests were 
implemented in the R package truncgof (R Core Team, 2017; Wolter, 2012). The 
detailed description of their seven tests is given in section 2. Five of them are the 
commonly used standard tests with the modified null hypothesis cumulative distri-
bution function. Following the original notation, these tests will be referred to as 
the ܦܣ∗ (supremum Anderson-Darling), ܦܣଶ∗ (quadratic Anderson-Darling), ܵܭ∗ 
(Kolmogorov-Smirnov), ܸ∗ (Kuiper) and ܹଶ∗ (Cramér-von Mises) tests, respective-
ly, in the remainder of the article. The other two tests are specially designed for the 
upper tails. They use the modified null hypothesis cumulative distribution function 
and the new weighing function. These are modified Anderson-Darling tests, which 
will be referred to as ܦܣ௨௣∗  and ܦܣ௨௣ଶ∗  tests, respectively. 

1 Poznan University of Economics and Business, Faculty of Informatics and Electronic Economy, 
Operations Research Department, 10 Al. Niepodległości St., 61–875 Poznań, Poland, corresponding 
author – e-mail: agnlach1@gmail.com. 

2 Adam Mickiewicz University, Faculty of Mathematics and Computer Science, Department of 
Probability and Mathematical Statistics, 87 Umultowska St., 61–614 Poznań, Poland. 



A. Lach, Ł. Smaga    Comparison of the goodness-of-fit tests… 297 
 

 

The tests by Chernobai et al. (2015) are often used in the literature, espe-
cially in the field of the operational risk calculation. Here, the choice of appro-
priate severity distribution is of crucial importance. In the process of calculating 
the aforementioned risk, Fischer, Jakob (2016) used a compound severity 
distribution, which involves dividing it into the body and the tail by a threshold. 
The Authors conclude that positive tempered ߙ-stable distribution better fits 
empirical data in the tail than lognormal, Weibull, gamma and generalized 
gamma distributions. To assess goodness-of-fit of the distributions in the tail 
they used among others the ܦܣ௨௣ଶ∗  test for truncated distributions. Chernobai et 
al. (2006) considered the following severity distributions: exponential, lognor-
mal, Weibull, Burr, generalized Pareto (GPD) and log ߙ-stable. The null hy-
pothesis that the cumulative distribution function belongs to truncated versions 
of the families of these distributions was verified by using the procedure de-
scribed in Chernobai et al. (2015). The tests for truncated distributions were 
also used by Chernobai et al. (2010), who analyzed the effects of model mis-
specifications on Value-at-Risk and Conditional Value-at-Risk figures. 

Examples of applications of the tests by Chernobai et al. (2015) can also be 
found in hydrology and social sciences. To estimate flood peaks, Brunner et al. 
(2017) used among others modified Anderson-Darling test for the upper tail to 
verify fitting of GPD and generalized extreme value distribution (GEV) to observed 
flood hydrographs. As was stated in the study, the test confirmed that the GPD fits 
well to the peak discharges and the GEV distribution fits well to the flood volumes. 
In the field of social sciences, Fagiolo et al. (2010) studied distributional properties 
of Italian household consumption expenditures. To study the tails of the distribu-
tions, they truncated distributions in several points and then they used standard 
truncated goodness-of-fit normality tests. Clementi et al. (2012) proposed a new 
model for income distribution: the ߢ-generalized distribution. As the fit in the right 
tail was of greater importance here, they decided to compare it with Singh-
Maddala or Dagum type I distributions using upper tail goodness-of-fit tests. 

In the majority of the studies listed above, the truncated tests were not the on-
ly ones, upon which the decisions were taken. However, it is clear that they had 
impact on the researchers’ final decisions and that the range of possible applica-
tions of them is wide. Until now no studies concerning the size and the power of 
these tests for the left truncated distributions were published. The aim of this 
paper is to fill this gap. 

The research of this paper is similar to that conducted by Pavia (2015). The 
main difference is that Pavia concentrated on complete distributions, while this 
paper refers to truncated ones. Pavia conducted the research for different sample 
sizes (10, 20, 50, 100, 200, 500). In this paper, the research is conducted for the 
sample of size 1000. Pavia verified the empirical sizes and the empirical powers of 
several goodness-of-fit tests available in the R packages, including five tests from 
the truncgof package (ܦܣ ,∗ܦܣଶ∗, ܵܭ∗, ܸ∗ and ܹଶ∗). As the Author was interested 
only in complete distributions, he omitted the tests from the truncgof package de-
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signed for the upper tail. When the truncation point is not set, the tests from this 
package can be used also in the case of complete samples. According to the 
analysis of the sizes of the tests, the main conclusion was that most of the tests 
from the truncgof package are giving unacceptable results, especially for bounded 
distributions. Only the ܦܣ∗ test from this package achieved acceptable rejecting 
rates for all examined distributions except for the uniform one. In case of the ex-
ponential distribution, the ܸ∗ test also gave reasonable results. When analyzing 
the power of the tests, in most of the examples the tests implemented in the trun-
cgof package showed superior power over the rest of the tests taken into compari-
son. The results for the bounded distribution were again unacceptable. 

The study in this paper is based on the artificial data generated from the distri-
butions that are used to describe the tails of asset returns. The shape of the tails 
has great importance in the assessment of the risk. The origins of the studies on 
the distribution of asset returns dates back to the year 1900. At that time Louis 
Bachelier noticed, that according to the Central Limit Theorem the distribution of 
the asset returns in long term should be Gaussian (Haas, Pigorsch, 2009). That 
implies that the tails of the distributions should be thin and tend to zero faster than 
exponentially (Feller, 1950). This conception was prevailing until 1963, when 
Mandelbrot (1963) noticed fat tails of distributions of the cotton prices logarithms. 
One of the first distributions proposed to replace the normal distribution was the 
t-distribution with power decaying tails (Haas, Pigorsch, 2009). However, recent 
studies show that most of the asset returns have semi-heavy tails (Echaust, 2014; 
Piasecki, Tomasik, 2013). The power-exponential distribution could be proposed 
here as alternative. Depending on parameters, its tails can change from thinner 
tails than those of normal distribution to fat ones. Another example might be 
Weibull distribution, whose tails vary from thin to fat. The distributions mentioned 
in this paragraph were chosen for the research due to their historical meaning or 
the possibilities they offer. For the details of the Central Limit Theorem and these 
distributions the reader is referred to Krzyśko (2000) and Magiera (2005). 

The remainder of this paper is organized as follows. In section 2, the tests for 
truncated distributions introduced in Chernobai et al. (2015) are presented. Sec-
tion 3 contains the results of the simulation studies. Finally, section 4 draws 
some conclusions. 

 

2. TESTS FOR TRUNCATED DISTRIBUTION 

 
This section contains description of seven goodness-of-fit tests for truncated 

distributions, which were introduced in Chernobai et al. (2015). Five of these 
tests are modifications of standard goodness-of-fit tests. The remaining testing 
procedures are specifically constructed for upper tails of distributions. Before 
the description of the tests, short information about upper tails in finance is 
given. 
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Upper tails in finance are defined as (ݔ)ܨതതതതതത = ܲ(ܺ >  is sufficiently ݔ where ,(ݔ
high, which means that ݔ → ∞ (Haas, Pigorsch, 2009). In case of the asset re-
turns, even 5% is enough high to be set as the truncation point (Haas, Pigorsch, 
2009). However, banks and other financial institutions may wish to define the 
tails in terms of the quantiles of the distribution. When calculating risk measures, 
like VaR or CVaR, usually quantiles of level 0.95, 0.975 or 0.99 are taken into 
account, although higher quantiles also appear (Haas, Pigorsch, 2009). On the 
other hand, when choosing an investment strategy, investors might be interested 
in much lower quantiles of distributions. 

Chernobai et al. (2015) adapted the Kolmogorov-Smirnov, Kuiper, Cramér-von 
Mises and Anderson-Darling tests, which are standard goodness-of-fit tests, for 
truncated distributions. Anderson, Darling (1952) enabled giving different weights 
to specific parts of a distribution function, multiplying classical Kolmogorov and 
Cramér-von Mises statistics by the weight function (ݔ)ߖ (where (ݔ)ߖ ≥ 0 for ݔ ∈[0,1]). Anderson and Darling considered two weight functions: (ݔ)ߖ = 1 and (ݔ)ߖ = 1)ݔ]/1 −  While for the first function test statistics reduce to the .[(ݔ
standard Kolmogorov and Cramér-von Mises statistics, the second function 
gives greater importance to the tails of the distribution function. 

Let us assume that we have a sample ܆ = ( ଵܺ, … , ܺ௡೎)′ of i.i.d. variables with 
an unknown distribution function ܨ. To formulate a goodness-of-fit problem for 
truncated distributions, Chernobai et al. (2015) used the appropriate distribution 
function for the truncated sample. Let ܨ଴ denote distribution function for the 
complete sample and let ܪ be the truncation point. The modified distribution 
function for the truncated sample is then defined by the following formula: 
(ݔ)∗଴ܨ   = ቐܨ଴(ݔ) − 1(ܪ)଴ܨ − (ܪ)଴ܨ , for ݔ ≥ 0,ܪ  , for ݔ < .ܪ   (1)

 
The complete sample of observations consists of ݊௖ items. The ordered sam-

ple of observations ݔ(ଵ) ≤ (ଶ)ݔ ≤ ⋯ ≤  has the empirical distribution function (௡೎)ݔ
(Krzyśko, 2004): 
 
;ݔ)௡೎ܨ  (܆ = #{1 ≤ ݆ ≤ ݊௖: ௝ܺ ≤ ௖݊{ݔ , ݔ   ∈ ܴ, ܆ ∈ ܴ௡೎. (2)

 
The difference between the values of the empirical distribution function for two 

neighboring points is equal to 1/݊௖. In case of left truncated distribution, the 
complete sample is the sum ݊௖ = ݉ + ݊, where ݉ denotes the number of un-
known observations below the truncation point and ݊ is the number of observa-
tions equal to or greater than the truncation point. The empirical distribution 
function for the truncated sample is the same as for the complete sample, but 
the difference between the values of the empirical distribution function for two 
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neighboring points is equal to 1/݊. The empirical distribution function for the 
observed part of the whole population is then (Chernobai et al., 2015): 
 
;ݔ)௡ܨ  1)(܆ − ((ܪ)଴ܨ + (ܪ)଴ܨ

= ۔ە
(ܪ)଴ܨۓ ݔ < ݆݊,(ଵ)ݔ (1 − ((ܪ)଴ܨ + (ܪ)଴ܨ (௝)ݔ ≤ ݔ < ,(௝ାଵ)ݔ ݆ = 1, … , ݊ − 1,1 ݔ ≥ .(௡)ݔ  

 

(3)

 
Thus, the null and alternative hypothesis can be formulated as follows: 

 
:଴ܪ  ܨ = :ଵܪ,∗଴ܨ ܨ ് ଴∗. (4)ܨ

 
To test the null hypothesis against the alternative one, the null distributions of 

the test statistics (described below) are approximated by the Monte Carlo method. 
The detailed procedure for computing the corresponding ݌-values is as follows: 
1. Compute the test statistic ௢ܶ௕௦ for the original data. 
2. Generate a sample of ݊ observations from the theoretical distribution func-

tion ܨ଴∗. Each observation has to be greater than or equal to ܪ. 
3. Compute the test statistic ܶ for the data generated in step 2. 
4. Repeat steps 2 and 3 ܰ times. Let ଵܶ, … , ேܶ denote the obtained values of the 

test statistic. 
5. Compute the ݌-value according to the formula (1/ܰ) ∑ ே௜ୀଵܫ ( ௜ܶ ≥ ௢ܶ௕௦), where ܫ(ܵ) denotes the indicator function of a set ܵ. 

The null hypothesis is rejected, when the ݌-value is less than or equal to the 
nominal significance level ߙ. Otherwise, we do not have any evidence to reject the 
null hypothesis. The asymptotic distributions of the test statistics considered in this 
paper are not known, which is one of the reasons of using the above procedure. 

Following Chernobai et al. (2015), the test statistics applied to verify the null 
hypothesis are divided into three groups: (1) the supremum class, (2) the quad-
ratic class, (3) the test statistics specifically designed to test goodness-of-fit in 
the upper tail. 

The first group is made up of three modified statistics: Kolmogorov-Smirnov 
-in supremum version. The Kol (∗ܦܣ) Kuiper (ܸ∗) and Anderson-Darling ,(∗ܵܭ)
mogorov-Smirnov test is based on the statistic called Kolmogorov distance, 
which measures the distance between empirical distribution function and given 
distribution function. The modified version of the Kolmogorov-Smirnov statistic is 
as follows: 
 

∗ܵܭ  = √݊sup௫ ;ݔ)௡ܨ| (܆ − (5) .|(ݔ)∗଴ܨ
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The Kuiper test statistic derives from the Kolmogorov distance. It is the sum of 
the greatest positive and negative difference between the empirical distribution 
function and the given distribution function. The modified version of the Kuiper 
test statistic is given by the following formula: 
 

 ܸ∗ = √݊(sup௫ ;ݔ)௡ܨ} (܆ − {(ݔ)∗଴ܨ + sup௫ (ݔ)∗଴ܨ} − ;ݔ)௡ܨ (6) .({(܆
 

The Anderson-Darling test statistic in the supremum version is also based on the 
distance between two distribution functions, but it put more emphasis on the tails: 
 
∗ܦܣ  = √݊sup௫ ;ݔ)௡ܨ| (܆ − 1)(ݔ)∗଴ܨඥ|(ݔ)∗଴ܨ − (7) .((ݔ)∗଴ܨ

 
The second group of statistics consists of two statistics: Cramér-von Mises 

(ܹଶ∗) and Anderson-Darling (ܦܣଶ∗) in quadratic version. Both statistics measure 
the area between empirical distribution function and given distribution function, 
but they assign different weights to observations. Cramér-von Mises statistic has 
the weight function equal to one, and its customized version is of the form: 
 
 ܹଶ∗ = ݊ න (ஶ

ு ;ݔ)௡ܨ (܆ − (8) .(ݔ)∗଴ܨଶ݀((ݔ)∗଴ܨ

 
The Anderson-Darling statistic in quadratic version again puts more weight in 

the tails: 
 
∗ଶܦܣ  = ݊ න ;ݔ)௡ܨ) (܆ − 1)(ݔ)∗଴ܨଶ((ݔ)∗଴ܨ − ஶ((ݔ)∗଴ܨ

ு (9) .(ݔ)∗଴ܨ݀

 
New statistics proposed in Chernobai et al. (2015) are based on the Anderson-

Darling statistics and give more importance to the upper tail of the distribution. The 
Authors introduced a new weight function, namely (ݔ)ߖ = 1/(1 − -After substi .(ݔ
tuting this function, the Anderson-Darling statistics for the truncated samples in 
supremum (ܦܣ௨௣∗ ) and quadratic (ܦܣ௨௣ଶ∗ ) version are respectively as follows: 
 

∗௨௣ܦܣ  = √݊sup௫ ;ݔ)௡ܨ| (܆ − 1|(ݔ)∗଴ܨ − (ݔ)∗଴ܨ , (10)

∗௨௣ଶܦܣ  = ݊ න ;ݔ)௡ܨ) (܆ − ଶ(1((ݔ)∗଴ܨ − ଶஶ((ݔ)∗଴ܨ
ு (11) .(ݔ)∗଴ܨ݀

 
The computational formulas for the test statistics for truncated distributions 

(for quadratic versions of the statistics and for the new statistics) can be found in 
Chernobai et al. (2015). 
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3. SIMULATION STUDIES 
 

This section contains the results of the simulation studies, conducted for sev-
en modified goodness-of-fit statistics presented in section 2 and for the selected 
distributions described in section 1. The aim of the studies was to evaluate the 
size and the power of the goodness-of-fit tests for truncated distributions on the 
basis of artificial data. The simulation studies were conducted for different tail 
thickness and truncation points. This section is organized as follows: first part 
describes the methodology of the studies, next the results of the evaluation of 
the size and the power are presented, finally some details of implementation in 
R program are given. 
 
3.1. Description of simulation experiments 
 

To compute the empirical sizes of the analyzed tests, the following procedure 
was applied: 
1. Generate n observations from the theoretical distribution that appears in the 

null hypothesis. 
2. Apply all the analyzed tests to the data generated in point 1. Note the 

p-values of the tests. 
3. Repeat the steps described in points 1 and 2 M times, were M is sufficiently 

large number. 
4. Compute the empirical size of each test as the mean of a number of rejections 

of the null hypothesis.  
To compute the empirical power of the tests, in point 1 of the above proce-

dure, the data were generated from a different distribution than it was stated in 
the null hypothesis. The steps from 2 to 4 remained the same. 

To determine the p-values, the testing procedures described in section 2 
were carried out. The ݌-values were calculated on the basis of ܰ = 100 Monte 
Carlo samples, which is the default value of ܰ in the truncgof package. Within 
each simulation a sample of ݊ = 1000 observations was generated. The num-
ber of simulation replicates was ܯ = 1000. The studies were conducted for 12 
distributions described in the next paragraph and for 5 truncation points ܪ =2, 4, 6, 8, 10. Altogether 60 experiments were conducted to evaluate both the 
empirical size and power. The results were verified on the significance level ߙ = 5%.  

The sample size ݊ = 1000, was determined on the basis of the simulation 
studies conducted for the selected cases. Namely, figure 1 presents the empir-
ical size and power of the analyzed tests for some cases under t-distribution. 
The power of all analyzed tests improved with the increase of the sample size 
to ݊ = 1000. In many cases also improvement in the size is visible. 



A. Lach, Ł. Smaga    Comparison of the goodness-of-fit tests… 303 
 

 

Figure 1. The size ((5)ݐ distribution, H=6) and the power ((5)ݐ vs (6)ݐ distributions, H=6) 
of the analyzed tests with respect to the sample size 

 
Source: own calculation. 

 

Values of the cumulative distribution functions for the chosen truncation points 
range from 0.4592 to 0.9999. In insurance data studies even lower levels are 
considered. Respective values in Chernobai et al. (2006) amounted to 0.0387 
and 0.8212 for the conditional distributions. On the other hand, in finance, some 
of the risk measures like VaR and CVaR, are based on as high quantiles of dis-
tributions as 0.95, 0.975 or 0.99, as was mentioned at the beginning of section 2. 

The actual distributions in experiments are: normal, t-distribution, power-
exponential and Weibull. The notation used for these distributions in the paper is 
as follows: ܰ(ߤ, ߤ ଶ) for the normal distribution, whereߪ ∈ ℝ is the location param-
eter and ߪ > 0 is the scale parameter; ݐ(݊) for the t-distribution, where ݊ ∈ ℕ de-
notes the degrees of freedom; ߤ)݋ܲܧ, ,௣ߪ  ,for the power-exponential distribution (݌
where ߤ ∈ ℝ, ߪ௣ > 0 and ݌ > 1 are the location, scale and shape parameters, 
respectively; ܹ݁(ߙ, ߙ for the Weibull distribution with the shape parameter (ߚ > 0 
and the scale parameter ߚ > 0. Normal distribution, t-distribution and power-
exponential distribution were used among other distributions by Piasecki, Tomasik 
(2013) to verify the shapes of the log asset returns on the polish market. The val-
ues of the estimators of these distributions’ parameters, e.g. for the WIG index for 
the chosen period labeled as ”h3”, were as follows: ܰ(0.1956, ,0.1982)݋ܲܧ ,(2.1561)ݐ ,(1.8623 1.5881, 1.3618). The t-distribution used by Piasecki, Tomasik (2013) 
is the generalized t-distribution with ݊ ∈ ℝା, while ݋ܲܧ is referred to as general-
ized error distribution (GED). Burnecki et al. (2015) studied the tails of the asset 
returns and considered among others: normal distribution ܰ(0, 2) and t-distribution (4)ݐ. Weibull distribution was used for instance to assess the operational risk by 
Guegan, Hassani (2018). The estimated parameters of the distributions for the 
whole analyzed period were as follows ܹ݁(0.5896, 182.9008). However, the 
standard version of the Weibull distribution is rarely used. If ܺ has Weibull distribu-



304 Przegląd Statystyczny, tom LXV, zeszyt 3, 2018 
 
tion, then −ܺ has extreme value distribution of type III and is used in extreme 
value theory (Magiera, 2005). For the detailed overview of domestic and external 
researches in the field of asset returns distributions please refer to Piasecki, To-
masik (2013). 

For each distribution, three sets of parameters were considered. As average 
return rates on the stock exchange are not significantly different from zero, all 
the location parameters of the considered distributions (if they exist) were set to 
zero. To obtain different thickness of tails, the remaining parameters were 
changed. In case of the normal distribution, the thickness of the exponential tail 
was controlled by the standard deviation, that was set to ߪ ∈ {3,4,5}. In case of 
the t-distribution, the thickness of the power tail was controlled by the number of 
degrees of freedom. They were set to ݊ ∈ {1,3,5}. For the power-exponential 
distribution, the parameter ݌ was set to 1.5, so the distribution has the tail thicker 
than exponential. Here the thickness of the semi-heavy tail was controlled by ߪ௣ ∈ {3,4,5}. In case of the Weibull distribution, ߙ ∈ {0.8,1,1.2}, which results in 
the power, exponential and faster than exponential decaying tail. 

The tails of the distributions considered in the simulation studies are visual-
ized in figure 2. The greatest probability mass in the tails appear in the ܹ݁(0.8,3), (1,3)ܹ݁ ,(1)ݐ and (0,5,1.5)݋ܲܧ distributions, respectively. The tails of 
the remaining distributions practically disappeared. 

 
Figure 2. Density for the tails of the distributions 

 
Source: own calculation. 
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Figure 3. Probability distributions used in power study 

 
Source: own calculation. 

 
3.2. Discussion of simulation results 
 

Empirical sizes and powers of a test are identified with the number of rejected 
null hypothesis. The empirical size of a test should be close to a determined 
significance level. The empirical power should be as large as possible. 

The empirical sizes of the tests obtained in the simulation studies are presented 
in table 1. The results suggest dividing the tests into three groups. First group 
contains the ܵܭ∗, ܹଶ∗ and ܦܣଶ∗ tests. In this group, the empirical sizes were on 
average 8-times higher than the determined significance level. The tests achieved 
visibly better results for the t-distribution, but the average rate of rejection was 
here still 4-times higher than the determined significance level. The second group 
includes the following tests: ܸ∗ and ܦܣ௨௣ଶ∗ . For these tests, the average rate of 
rejection was 3-times higher than the significance level. These tests also noted 
better results for the t-distribution. Here probability of rejection of the true null hy-
pothesis was twice higher than the significance level. The third group consists of 
the remaining two tests: ܦܣ∗ and ܦܣ௨௣∗ . In this group, the rate of rejection of the 
null hypothesis was on average 1.5-times higher than the determined significance 
level. No clear differences among the distributions were detected. 

On the basis of figure 1 and the above results it can be stated, that the consid-
ered tests require large number of observations to control the type I error. Unfor-
tunately, the tests in the first and second group may not keep the preassigned 
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type I error level even for samples of 1000 observations. In case of the fat tailed 
distribution like (1)ݐ, the Authors made additional calculations to verify the size of 
the tests, when threshold levels are very high, ܪ = 50, 100, 150, 200, 250. The 
size of the tests remained similar to the ones given in table 1 or figure 1. The 
tests from the first group are the most liberal, and the results of the powers of 
these tests will not be further analyzed. The results for the tests from the second 
group will be presented only for the illustrative purposes. 

Table 1. EMPIRICAL SIZES OF THE TESTS (AS PERCENTAGES, ߙ = 5%) 

Actual distribution ܦܣ ∗ܸ ∗ܵܭ ܪ∗ ܹଶ∗ ܦܣଶ∗ ܦܣ௨௣∗ ∗௨௣ଶܦܣ   ܰ(0,3) 2 48.1 16.3 7.0 51.8 50.6 7.5 14.9
 4 44.9 15.0 7.0 49.6 48.3 7.9 16.7
 6 42.3 13.8 6.9 46.9 45.0 8.2 17.5
 8 40.4 12.5 7.2 44.3 42.1 8.3 16.6
 10 37.0 12.2 7.4 41.8 39.6 7.9 15.8ܰ(0,4) 2 49.3 17.0 6.7 52.9 51.5 7.5 14.6
 4 46.6 15.5 7.0 50.8 48.9 7.6 15.6
 6 44.2 14.7 6.9 49.2 47.5 8.0 17.2
 8 43.0 13.9 7.0 46.8 44.8 8.3 17.9
 10 41.2 13.5 7.2 45.4 43.7 8.3 17.6ܰ(0,5) 2 49.5 16.8 6.7 53.0 52.2 7.4 14.2
 4 47.4 16.2 7.0 51.6 50.2 7.6 15.2
 6 45.5 15.2 7.0 50.2 48.4 7.8 16.5
 8 44.0 14.3 6.9 48.4 46.7 8.0 16.5
9.4 7.5 22.8 22.9 6.4 9.7 18.8 2 (1)ݐ17.0 8.4 44.4 46.7 7.1 13.3 42.4 10 
 4 20.9 9.9 6.3 24.3 24.2 7.5 9.3
 6 21.1 9.9 6.3 24.6 24.3 7.5 9.3
 8 21.2 9.9 6.3 24.6 24.4 7.5 9.3
9.8 7.4 20.2 20.4 6.4 9.3 16.0 2 (3)ݐ9.3 7.5 24.4 24.6 6.3 9.9 21.2 10 
 4 18.8 9.8 6.4 23.1 23.2 7.4 9.6
 6 20.7 9.8 6.3 24.0 24.0 7.5 9.4
 8 21.1 9.9 6.3 24.3 24.2 7.5 9.3
10.0 7.7 19.6 18.8 6.5 9.2 15.5 2 (5)ݐ9.3 7.5 24.3 24.5 6.3 9.9 21.1 10 
 4 18.3 9.7 6.4 22.8 22.8 7.4 9.6
 6 20.5 9.7 6.3 23.6 23.6 7.4 9.5
 8 20.9 9.9 6.3 24.3 24.2 7.5 9.4
24.7 9.7 61.6 61.0 7.6 24.5 52.5 2 (0,3,1.5)݋ܲܧ9.3 7.5 24.2 24.4 6.3 9.9 21.1 10 
 4 49.0 19.9 7.9 55.6 55.8 10.7 26.8
 6 45.9 17.2 8.0 51.9 51.1 10.7 25.4
 8 43.3 16.0 7.8 48.6 47.8 9.9 23.7
24.2 9.2 62.7 62.5 7.6 25.4 53.9 2 (0,4,1.5)݋ܲܧ22.2 9.5 45.9 46.1 7.8 14.7 41.7 10 
 4 51.3 21.7 7.8 58.2 58.7 10.4 26.2
 6 49.2 19.1 7.9 54.8 55.4 10.9 27.1
 8 45.6 17.2 8.0 51.3 50.4 10.5 24.9
 10 43.4 16.1 8.0 49.1 47.8 9.9 22.9
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Table 1. EMPIRICAL SIZES OF THE TESTS (AS PERCENTAGES, ߙ = 5%) (cont.) 

Actual distribution ܦܣ ∗ܸ ∗ܵܭ ܪ∗ ܹଶ∗ ܦܣଶ∗ ܦܣ௨௣∗ ∗௨௣ଶܦܣ  23.1 9.3 64.2 62.6 7.6 25.6 54.6 2 (0,5,1.5)݋ܲܧ 
 4 51.2 23.3 7.8 60.6 59.8 10.2 25.7
 6 50.0 20.2 7.9 56.5 56.0 10.7 27.0
 8 47.7 18.4 7.8 53.1 53.1 10.4 25.6
 10 45.1 16.7 7.6 50.7 50.0 10.4 23.9ܹ݁(0.8,3) 2 47.4 15.6 7.0 51.2 49.8 7.6 15.8
 4 44.7 14.8 6.9 49.5 48.5 7.8 17.0
 6 44.0 14.3 7.0 48.4 46.2 7.9 17.9
 8 43.1 14.0 7.1 47.3 45.5 8.2 18.3
 10 42.7 13.8 7.2 46.3 45.0 8.2 18.5ܹ݁(1,3) 2 48.0 15.6 7.0 51.5 50.1 7.6 15.7
 4 44.3 14.5 6.9 49.2 47.9 7.8 17.2
 6 43.3 14.3 7.0 47.7 45.7 8.2 18.0
 8 42.5 13.7 7.2 46.4 45.1 8.2 18.5
 10 41.7 13.2 7.3 45.3 44.7 8.2 19.0ܹ݁(1.2,3) 2 48.3 16.0 7.0 51.8 50.6 7.6 15.4
 4 44.3 14.5 6.9 49.1 47.5 7.9 17.3
 6 43.0 14.0 7.1 47.2 45.6 8.2 18.3
 8 41.8 13.5 7.3 45.6 44.7 8.3 18.7
 10 40.5 13.2 7.4 44.4 44.1 8.3 19.2

Source: own calculation. 

Empirical powers of the tests are presented in table 2. The visualization of the 
probability distributions used in the power study is presented in figure 3. The 
tests from the second group, that is the ܸ∗ and ܦܣ௨௣ଶ∗  tests, have high empirical 
powers, that on average amount to 97% for the first test and 98% for the second 
test. However, it has to be reminded, that these tests are too liberal. The ܦܣ∗ 
and ܦܣ௨௣∗  tests from the third group are much more realistic. While the average 
rate of rejection of the false null hypothesis for the first test is 64%, it is only 30% 
for the second test. The results for the ܦܣ௨௣∗  are very irregular. For the distribu-
tions with the fast decaying tails, that is for the normal and power-exponential 
ones, the average powers are lower than 3%. 

The powers of the ܸ∗, ܦܣ௨௣ଶ∗  and ܦܣ∗ tests show common behavior with re-
spect to the decaying rates of the tails. With regard to the distributions with the 
fast decaying tails, that is the normal and power-exponential distributions, the 
empirical powers of the tests decrease with the growing thickness of the tail. In 
case of the distributions with thicker tails, that is the t-distribution and Weibull 
distribution, the relation is opposite, the powers of the tests increase with the 
growing thickness of the tail. Summarizing, the powers of the tests are higher 
for extreme tails, that are decaying exponentially or powerly. In case of the 
distributions with semi-heavy tails, the considered tests had more problems 
with recognizing the actual distribution. It is also worth noting that the powers 
of the ܸ∗, ܦܣ௨௣ଶ∗  and ܦܣ∗ tests were increasing with the growth of the truncation 
point. 
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Table 2. EMPIRICAL POWERS OF THE TESTS (AS PERCENTAGES, ߙ = 5%) 

Null hypothesis Actual 
distribution ܦܣ ∗ܦܣ ∗ܸ ܪ௨௣∗ ∗௨௣ଶܦܣ   ܰ(0,3.5) ܰ(0,3) 2 100.0 71.3 0.4 99.9

 4 100.0 81.0 0.5 100.0
 6 100.0 87.0 0.5 100.0
 8 100.0 89.5 0.4 100.0
 10 100.0 90.5 0.5 100.0ܰ(0,4.5) ܰ(0,4) 2 99.2 35.1 1.2 98.6
 4 99.7 45.5 1.2 98.8
 6 99.7 53.2 1.2 99.5
 8 99.8 59.8 1.2 99.6
 10 99.9 64.7 1.2 99.7ܰ(0,5.5) ܰ(0,5) 2 93.4 15.6 1.8 91.4
 4 95.8 19.8 1.7 94.8
 6 97.1 23.6 1.8 96.7
 8 98.3 27.9 1.8 97.4
100.0 100.0 100.0 100.0 2 (1)ݐ (2)ݐ97.6 1.8 32.7 98.5 10 
 4 100.0 100.0 100.0 100.0
 6 100.0 100.0 100.0 100.0
 8 100.0 100.0 100.0 100.0
99.6 48.8 83.6 99.3 2 (3)ݐ (4)ݐ100.0 100.0 100.0 100.0 10 
 4 100.0 93.4 53.1 100.0
 6 100.0 95.3 54.2 100.0
 8 100.0 96.0 55.7 100.0
83.9 24.3 28.4 56.0 2 (5)ݐ (6)ݐ100.0 55.9 96.2 100.0 10 
 4 90.4 44.9 27.5 95.1
 6 95.4 52.2 28.9 97.8
 8 97.4 56.1 29.5 98.4
;0,3.5)݋ܲܧ98.5 29.9 57.7 98.0 10  100.0 1.4 63.4 99.9 2 (0,3,1.5)݋ܲܧ (1.5
 4 100.0 69.7 1.4 100.0
 6 100.0 73.8 1.5 100.0
 8 100.0 74.0 1.3 100.0
98.3 2.1 26.4 97.7 2 (0,4,1.5)݋ܲܧ (0,4.5,1.5)݋ܲܧ99.9 1.3 74.4 100.0 10 
 4 98.1 32.7 2.2 98.9
 6 98.2 36.4 2.1 99.3
 8 98.3 38.4 2.0 99.2
91.0 2.8 14.4 91.3 2 (0,5,1.5)݋ܲܧ (0,5.5,1.5)݋ܲܧ99.3 2.0 38.9 98.2 10 
 4 91.9 16.8 2.6 94.1
 6 92.0 19.0 2.8 95.6
 8 91.5 19.9 2.7 96.1
 10 91.5 20.0 2.4 95.9
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Table 2. EMPIRICAL POWERS OF THE TESTS (AS PERCENTAGES, ߙ = 5%) (cont.) 

Null hypothesis Actual 
distribution ܦܣ ∗ܦܣ ∗ܸ ܪ௨௣∗ ∗௨௣ଶܦܣ   ܹ݁(0.9,3) ܹ݁(0.8,3) 2 95.8 80.3 58.5 99.7

 4 99.9 90.4 64.8 100.0

 6 99.9 94.9 69.3 100.0

 8 100.0 97.2 72.5 100.0

 10 100.0 98.3 75.9 100.0ܹ݁(1.1,3) ܹ݁(1,3) 2 82.9 58.4 43.0 98.2

 4 96.9 74.2 49.3 99.8

 6 99.8 84.7 55.3 100.0

 8 99.8 92.0 59.3 100.0

 10 99.9 95.2 62.3 100.0ܹ݁(1.3,3) ܹ݁(1.2,3) 2 67.4 43.6 35.2 93.1

 4 90.7 60.1 39.8 99.2

 6 97.8 73.7 43.9 99.9

 8 99.8 82.9 49.0 100.0

 10 99.8 89.5 53.4 100.0

Source: own calculation. 

 
Due to the time-consuming procedures, the p-values were calculated on 

the basis of ܰ = 100 Monte Carlo samples, the default value of ܰ in the trun-
cgof package. To justify the obtained results, the randomness of the p-values 
was studied for the selected cases (similar analysis was considered in 
Smaga, 2017). The tests chosen to the power study were applied 100 times to 
a single data set, with different values of ܰ. The study was performed for the 
actual distribution ܰ(0,4), under the true and false null hypothesis. Figure 4 
presents the results. The median of each analysed case does not vary con-
siderably between different numbers of ܰ. The variance of p-values decreas-
es with the increase of ܰ, therefore, in the unconvincing cases, it is recom-
mended to repeat the tests with a higher value of ܰ. This may at least slightly 
improve the results, for example, the empirical sizes of the tests ܦܣ ,∗ܦܣଶ∗, ܵܭ∗, ܸ∗, ܹଶ∗, ܦܣ௨௣∗  and ܦܣ௨௣ଶ∗  were equal to 7.5, 42.8, 39.4, 13.6, 44.8, 7.6 and 
13 respectively for ܰ = 1000, actual distribution ܰ(0,4) and ܪ = 6, while 
for ܰ = 100, they were equal to 6.9, 47.5, 44.2, 14.7, 49.2, 8 and 17.2 respec-
tively. 

All the calculations were done in R statistical environment (R Core Team, 
2017). Except the R package truncgof (Wolter, 2012), the R packages normalp 
(Mineo, 2014) and doParallel (Calaway et al., 2017) were also used, since they 
deal with power-exponential distributions and parallel computing, respectively. 
When writing the code in R program, many tips and hints were drawn from the 
handbook written by Górecki (2011). 
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Figure 4. Boxplots for the randomness of the p-values  

 

For each boxplot the testing procedure was repeated 100 times. For a-d the null, and for e-h the alternative hy-
pothesis was true. The p-values determined on the basis of ࡺ = ૚૙૙૙૙૙ for a-h were as follows: 0.99010, 0.80513, 
0.49084, 0.76880, 0.00053, 0.04464, 0.48980, 0.00680. 

Source: own calculation. 
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4. CONCLUSIONS 
 

The aim of this paper was to present the results of the simulation studies, that 
were evaluating the finite sample behavior of the tests for truncated distributions 
introduced in Chernobai et al. (2015) and implemented in the R package trun-
cgof (Wolter, 2012). The tests were performed with default values of parameters 
used in the truncgof package. The research was based on artificial data gener-
ated from the distributions that are often describing the tails of asset returns. The 
study was conducted for different tail thickness and for changing truncation 
point. In the cases considered in the article, the ܵܭ∗, ܹଶ∗, ܦܣଶ∗, ܸ∗ and ܦܣ௨௣ଶ∗  
tests did not maintain the preassigned type I error level. The remaining two 
tests, ܦܣ∗ and ܦܣ௨௣∗ , obtained reasonable rejection rates for the true null hy-
pothesis. The power of the ܦܣ∗ test was much higher than the power of the ܦܣ௨௣∗  
test. While the average rate of rejection of the false null hypothesis for the first 
test is 64%, it is only 30% for the second test. It was also noticed, that the power 
of ܦܣ∗ and ܦܣ௨௣∗  tests is higher for extreme tails and it grows with the truncation 
point. On the basis of the obtained results, it is recommended to assess the 
behavior of the tests analyzed in this article, in terms of the sample size, theoret-
ical distribution and truncation point, before every application. In the unconvinc-
ing cases (e.g., when the p-value is close to the significance level), it is suggest-
ed to use greater number ܰ of Monte Carlo samples to estimate the p-values of 
the tests than ܰ ൌ 100, which is the default value of ܰ in the truncgof package. 
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PORÓWNANIE TESTÓW ZGODNOŚCI DLA ROZKŁADÓW UCIĘTYCH 

Streszczenie 

Celem artykułu jest empiryczne zbadanie mocy i rozmiaru siedmiu testów 
zgodności, zaprezentowanych w pracy Chernobai i inni (2015), przeznaczonych 
dla rozkładów lewostronnie uciętych. Badania symulacyjne oparto na danych, 
wygenerowanych z rozkładów, które były w przeszłości lub są obecnie sto-
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sowane do opisu ogonów rozkładów stóp zwrotu. Badania przeprowadzono dla 
różnych grubości ogonów rozkładów oraz zmieniających się poziomów ucięcia. 
Wyniki symulacji wskazują na istnienie znacznych różnic pomiędzy poszczegól-
nymi procedurami testowymi. Ponadto otrzymanie zadowalających wyników 
w przypadku niektórych procedur wymaga dość dużej liczby obserwacji. 

Słowa kluczowe: moc testu, program R, rozkłady ucięte, rozmiar testu, testy 
zgodności 

 
COMPARISON OF THE GOODNESS-OF-FIT TESTS FOR TRUNCATED 

DISTRIBUTIONS 

Abstract 

The aim of this paper is to investigate the finite sample behavior of seven 
goodness-of-fit tests for left truncated distributions of Chernobai et al. (2015) in 
terms of size and power. Simulation experiments are based on artificial data 
generated from the distributions that were used in the past or are used nowa-
days to describe the tails of asset returns. The study was conducted for different 
tail thickness and for changing truncation point. Simulation results indicate that 
the testing procedures do not work equally well under finite samples, and some 
of them require quite large number of observations to perform satisfactorily. 

Keywords: goodness of fit tests, power of test, R program, size of test, trun-
cated distributions 

 




